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Abstract 

Fast and reliable structures and materials analysis of full 
fuselage, wing, and/or empennage sections is now for first 
time possible with access to highly optimized software, 
called STRIPE, and the NAVO/BABBAGE and 
AFRL/HAWK systems. Analyses of this type have 
opened up the possibility for considering the statistical 
uncertainties in material data, geometry, crack locations, 
etc. Very detailed analysis can be performed on huge 
models which are geometrically exact down to rivet 
details where growth of numerous cracks at numerous 
locations is studied. Access to this type of analysis results 
can drastically reduce inspection requirements, prevent 
premature retirement of old aircraft and increase aircraft 
safety; all resulting in a potential to save billions of 
dollars if implemented across the USAF fleet.  

By applying a novel mathematical multi-scale scheme, 
these problems can be split into solving many thousand 
smaller problems and one very large problem. The 
efficient implementation of these two different activities 
is crucial for computing in a shared environment.  This 
technique results in solution of 109 sets of equations for 
the large problem with greater than 104 right hand sides 
and thousands of smaller problems having about 106 
degrees of freedom (DoF) each. Iterative solvers are not 
competitive so direct solvers must be used. The major 
difficulty in achieving scalability is then related to the 
extensive I/O traffic characteristic of commercially 
available (MSC/NASTRAN and ABAQUS for example) 
software. 

The paper describes various techniques adopted to 
achieve high system scalability when solving the world’s 
largest strength of materials problem related to aircraft 
maintenance and design.  Support from major software 
vendors (SGI, IBM), MSRC’s support specialists as well 
as I/O specialists at the University of Tennessee (as a part 
of the PET-program) have strongly contributed to the 
successful results demonstrated.  The technological 

capability developed is demonstrated by analyzing an 
idealized C-130 center wing box. 

1.  Introduction 
The requirement to solve GDoF (109 DoF) finite element 
meshes is a result of trying to assess the residual strength 
of the C-130 center wing box (CWB).  Residual strength 
is simply the maximum load carrying capability of a 
structure with a given damage condition.  The structural 
integrity of the C-130 CWB has been under investigation 
for quite some time.1  One damage condition of interest 
was determined during an extensive destructive teardown 
and failure analysis.2  The computational methods 
developed control the error in the solution, are validated 
by strain data from test such as that shown in reference 
[3] and can be used to predict this specific damage 
condition as well as 1000’s more. 

In order to obtain reliable solutions, the contact problems 
riveted connections, multiple interacting fatigue cracks, 
corrosion damage, etc. must be considered in the large 
parts of the structural parts analyzed.  Thus, statistical 
fatigue analysis is a necessity.  We use a multi-scale 
scheme for solution of contact problems. In order to 
effectively use this scheme, the equation solver must 
efficiently handle many right hand sides.  Although 
iterative solvers are superior if the ill-conditioning and 
load balancing problems can be solved, which is an open 
question for problems of this size, direct solvers are 
preferred when solving problems with hundreds of 
thousands of right hand sides.  A direct equation solver 
designed for solution of problems with many right hand 
sides with emphasis on retaining good scalability on 
hardware systems having thousand of processors is 
described below. Very large meshes of a C-130 CWB 
resulting in problems of GDoF-size have been created at 
the USAF Academy’s Center for Aircraft Structural Life 
Extension (CAStLE).  Large-scale analyses on the 
AFRL/HAWK and NAVO/BABBAGE systems using 
thousands of processors have been performed.  



2. A Direct Solver for Solution of GDoF 
Problems 
Domain Decomposition 

A domain decomposition approach is being developed 
where non-iterative techniques are used on each analysis 
level including the top level. The basic method used 
hence is the classical sub-structuring technique (i.e. 
computation of the Schur complement in mathematical 
notation). The system of algebraic equations to solve on 
each analysis level can then be written: 
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The internal degrees of freedom are denoted xi and the 
boundary degrees of freedom xb, respectively.  The 
computational steps are, 

• Assembly of domains from the analysis level 
below (or element matrices on lowest level) in 
order to form matrices A, B and C, respectively 

• Factorize of the A-matrix 
• Calculate ሾିܣଵ ·    ሿܤ
• Create domain stiffness ሾܥ െ ்ܤ · ଵିܣ ·                           ሿܤ
• Create right hand side ሼܨሽሾ்ܤ ·  ሽܨଵሿሼିܣ

If the memory is large enough, the five steps are 
computed sequentially without writing any data to disk.  
If memory is insufficient, temporary data is written to 
disk creating an enormous I/O bottleneck which precludes 
scalability to large systems. 

To obtain good scalability, the subdivision of the domain 
into sub-domains must 

• Minimise the total number of floating point 
operations required 

• Equally distribute the computational load over 
the hardware system used  

• Consider memory limitations on distributed 
memory systems like NAVO/BABBAGE 

• Consider number of partitions used on shared 
memory systems like AFRL/HAWK 

Presently, an automated bottom-up approach is used to 
define the domains on various levels.  In the first step the 
finite element mesh is divided into a number of element 
groups containing typically 30-40 finite elements in case 
of stiffened shell structures. The process is repeated on 
level after level until only one global element remains 
(top level).   Typically 3-12 levels are used for problems 
ranging from MDoFs to GDoFs. The load balancing 
algorithm is iterative and is more difficult on the higher 
domain levels. The measure of the computational work in 
the load balancing algorithm is the number of floating 
point operations which can be calculated exactly since a 

direct solution technique is used. Ideally the amount of 
I/O needed on the different levels should be considered 
too when optimizing the load balancing. 

Table 1 exemplifies the approximate number of domains 
created at different analysis levels during the 
decomposition of a generic finite element mesh having 13 
million finite elements, Figure 7. 

Table 1 Example of the number of domains used per level 
when analyzing a mesh with 13 million finite elements 

Level 1 2 3 4 5 6 7 8 9 10
Number of 
Domains 360,000 90,000 16,000 4,000 1,000 260 80 25 7 1

The solver uses mixed OpenMP and MPI software where 
OpenMP is used in each MPI-process. On distributed 
memory machines, one MPI process is typically allocated 
to one computational node. The main reason for using 
mixed MPI/OpenMP is that each MPI process must have 
access to sufficient memory. As mentioned, the load 
balancing algorithm, which governs the subdivision into 
domains, is based on the criterion that each MPI process 
shall perform roughly the same number of floating point 
operations.  Initially each MPI process, computational 
node, works completely independently and analyzes a 
number of levels, starting from the lowest level, 
completely independent of the other MPI processes. The 
number of levels to be analyzed by one MPI process is 
selected from the criterion that the computational work in 
the different MPI-processes should be equal. This is often 
achieved within a few percent variation.   

Practical experience shows that for large wing type 
structures like the C-130 CWB it is optimal if the 
different MPI processes compute completely independent 
of one another during the 5-8 lowest levels.     

When close to perfect load balancing can no longer be 
achieved by using completely isolated branches, one 
branch per MPI process, the solver shifts mode and 
assigns several MPI processes to calculate the domain 
stiffness and right hand sides. Each analysis level has the 
optimization task to find to the optimum distribution of 
parallel jobs, i.e. the selection of domain sizes, their 
distribution and the number of MPI-processes to assign to 
each parallel job.  Since the individual MPI-processes can 
not share a common memory this part of the solution 
scheme becomes more I/O-intensive something that 
prevents good scaling properties on hardware systems like 
the AFRL/HAWK. 

We first discuss performance on the AFRL/HAWK 
system.  The learning curve was quite steep on the SGI 
Altix shared memory system HAWK at AFRL. Several 
months were spent simply porting the source code from 
AFRL/EAGLE (SGI Altix as well) to HAWK.  The 
source code and makefiles did not change between the 
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two platforms.  EAGLE was using SLES 9 and Intel 
FORTRAN and C/C++ compiler versions 8.1; whereas, 
HAWK was using SLES 10 and compiler versions 9.1 
initially.  STRIPE could not be recompiled and produce a 
properly executing code under version 9.1 on HAWK.  
The same problem would have existed on EAGLE using 
compiler versions 9.1; thus, the problem appears to be 
with the compiler and not with the hardware.  Not until 
version 10.0.023 was available did we have a working 
executable on HAWK. 

By default, MPI processes are always placed by (SGI) 
mpirun and (LSF) pam commands in a round-robin 
fashion.  The omplace command was introduced in MPT 
1.15, and was new to HAWK.  Simply a dplace wrapper 
script, it is not "required", but is much easier to use than 
dplace.  Using the wrong dplace options can result in all 
processes being placed on just one CPU.4  Many 
unsuccessful attempts were made using dplace before 
exclusive use of omplace began in Sep 2007.  

As our scaling attempts increased, we did so by increasing 
the size of the job (computational effort), number of 
CPUs and number of MPI processes.  Regardless of 
number of CPUs and MPI processes, as the computational 
effort increased, the analysis would abort with no 
information regarding the cause.  After close observation 
of executing jobs by the SGI experts, the cause was 
determined to be that the MPI processes were exceeding 
their available stacksize.  Increasing the value of the 
stacksize available to each MPI thread via the 
KMP_STACKSIZE environment variable from the 
default (1MB) to 1GB in addition to reducing the number 
of OpenMP threads resulted in successful job execution. 

For meshes above 742 MDoF, the analysis requires more 
than 12 MPI processes to finish within the maximum two 
week queue.  However, increasing the number of MPI 
process requires more memory than is available on the 
HAWK fat partitions which have 4 GB memory per CPU.  
Two possible solutions exist; one, execute the 12 MPI 
process jobs for more than two weeks; two, execute 
analysis across partitions to access more available 
memory.  The two fat partitions on HAWK have 500 
CPUs and 2 TB memory; whereas requesting the 
maximum CPUs per job allowed, 2000, makes 4 TB of 
memory available per job but across multiple partitions. 

Improvements were made to the domain decomposition 
phase of the code in an attempt to solve the larger jobs 
within the queue time limit.  A 30% increase in domain 
decomposition was achieved; however, meshes larger 
than 742 MDoF still could not be solved.  

Our success in executing cross partition jobs has been 
limited.  The largest job executed to date is 418 MDoF 
which is the idealized C-130 CWB with a p-level of 3.  

This size job is easily 10 times smaller than what is 
required to analyze the full C-130 CWB.  The cause of the 
job crashes above p=3 is due to exceeding the requested 
memory due to the unpredictable memory required for the 
system buffer cache.  This problem exists on the single 
partitions jobs as well, but is somehow exacerbated in the 
cross-partition jobs.  Currently, there is no solution to this 
problem. 

Another unresolved issue with cross-partition jobs is long 
wait times on messages sent from the metadata server 
(MDS).  The SGI experts noticed a correlation between 
long wait times on messages sent from the MDS and hard 
crashes of the cross-partitions jobs.  The cause of the long 
wait times has yet to be determined. 

Lastly, excessive ethernet errors were occurring on three 
of the batch nodes which caused cross-partition MPI jobs 
to crash.4  We learned of this issue on 3 June 08 and have 
not determined how many jobs in the past year have 
crashed for this reason.  

Many right hand sides 

For problems of GDoF size, the number of right hand 
sides can exceed 50,000.  The strategy used for obtaining 
good computational efficiency in such a case is 

• Calculate all solution vectors on the top level 
and write solution data only for boundary nodes 
for those domains forming the top level domain 

• For each level, and each domain on that level, 
calculate the solution data for the boundary 
nodes for domains on the level directly below  

• On the lowest domain level, assemble all local 
solution vectors for each load case to a global 
vector with degrees of freedom 

As mentioned previously, on each domain level the 
different MPI processes work independently. Even for a 
very large number of right hand sides, the stiffness matrix 
needs to be read from disk only once which keeps the I/O 
operations at a minimum. 

The wall time, TLC,  needed to decompose a problem with 
LC right hand sides has, for a 50 MDoF problem with 
50,000 right hand sides been measured on 
NAVO/BABBAGE to 

ܶ ൌ ௨ܶ · ሺ1  ܥܮ 22000⁄ ሻ                                                      

Where Tup is the wall time needed to decompose a 
problem with just one right hand side. The wall time 
needed to calculate the internal degrees of freedom once 
the top level problem has been solved, TLC2, was observed 
to be: 

ܶଶ ൌ ௗܶ௪ · ሺ1  ܥܮ 4500⁄ ሻ                                                    
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Where Tdown  is the wall time needed with just one right 
hand side. 

Accurate and Fast Solution of 3D Contact Problems 

In order to accurately analyze the C-130 CWB mesh, the 
contact problem, which generates 104 to 105

 right hand 
sides, between the rivets/bolts and aircraft structure must 
be solved.  Due to the nonlinear character of the contact 
problem an iterative scheme has been designed which is 
both robust, virtually exact, converges fast and 
simultaneously takes the mathematical character of the 
problems appearing during the iteration steps into 
account.  The contact problem, Figure 2, of interest is 
split into three problems.  The global problems a) and c) 
in Figure 2 are analyzed without considering either the 
contact surfaces or the crack surfaces, i.e., all surfaces are 
in perfect sliding-free contact.  The splitting scheme used 
then has the advantage that the global analysis a) and c) 
which is very costly for problems of GDoF-size do not 
have to be repeated for varying crack sizes and contact 
surfaces.  The local problems b), see also Figure 3, are 
analyzed for fixed (but á priori unknown) locations of the 
contact surfaces for a set of loading functions defined by 
carefully selected traction basis functions Q1 − Q4 and 
scaling factors β(m,I), the primary unknowns.   

A necessary condition to be satisfied at the two points 
separating contact and no-contact is: 

 KI = 0 

and that normal stresses are compressive at the part of the 
circular boundary being in contact.  Equation (4) can be 
used as a very precise criterion to find the two points 
separating contact and no-contact.  A simple Newton-type 
algorithm can then be used to find the contact points 
satisfying Eq. (4) for each bolt/rivet.  The splitting 
scheme is simply used as a very fast solver for 
determination of stress intensity factors at the crack-tips 
and at potentially correct contact positions during 
iterations.  Note that during iterations and before 
convergence is achieved KI ≠ 0 implying that there is a 
strong stress singularity at the assumed contact positions.  
Robustness of the approach is obtained by using a hp-type 
of mesh moving with the location of the assumed contact 
points.  Experience shows that the algorithm converges to 
about 3 digits accuracy in less than 5 iterations.  Figure 4 
gives an overview of the contact solution scheme in a 3D 
setting. 

CPU efficiency: The code is optimized for efficient 
memory and cache utilization and executes typically with 
70-80% of the theoretical peek processor speeds 
(typically 3-8 GFLOPs/CPu on state of the art hardware 
2007).   

I/O efficiency:  Scalability to thousands of processors on 
the GDoF problems of interest is prevented by the 
significant I/O activities needed in a direct solver. 
Different techniques are used in the solver to reduce the 
time needed for I/O. The techniques used are use of large 
memory buffers, recalculation of data, reuse of data in 
memory buffer, building local data structures optimized 
for each MPI process etc.  

Table 2 exemplifies the scaling performance for a small 
shell problem having about 20 MDOFs. Speed up is 
measured in wall time, hence data shown includes all I/O-
activities. The table shows that by increasing the number 
of processors by a factor five, from 2 nodes to 10 nodes 
on NAVO/BABBAGE, the time needed to solve the 
problem decreases by a factor four. The high theoretical 
maximum processor speed, i.e., 7.6 GFLOPS and the very 
efficient utilization of processors in the code, 70-80% of 
theoretical speed, makes I/O effects more critical when it 
comes to scalability.  

Table 2 Scaling properties measured in wall time during 
solution of a shell problem with 20 MDoF 

Relative 
Performance CPU 8 16 32 64 96 128 160 192

babbage  - - 1.00 1.88 2.68 3.36 3.97 4.63
hawk  1.00 0.59 7.00 7.00 - 4.04 4.29 3.75

On the AFRL/HAWK system with theoretical maximum 
processor speed of 6.4 GFLOPS; time to solution is 
extremely sensitive to I/O performance just as with 
NAVO/BABBAGE.  On AFRL/HAWK, workspace for 
executing jobs reside on two large file systems 
(/workspace and /large).  If all of the I/O is with files 
residing in the same directory, the files will all reside on a 
small subset of disks which severely limits the available 
I/O bandwidth. If each file is placed in a different 
directory, they would be spread across many disks and 
provide much greater I/O performance.4  This concept 
was investigated by executing a 133 MDoF analysis using 
256 CPU, 512 GB memory, and 8 MPI processes.  This 
analysis was run ten times with all file I/O on a single 
directory and ten times with all file I/O on multiple 
(roughly 20) directories.  The mean and standard 
deviation  wall time to solution, which includes all I/O 
activity, for the single directory execution was 72.3 hrs 
and 5.6 hrs and mulitiple directory runs was 56.6 hrs and 
14.7 hrs; respectively.  Thus, using multiple directories 
increases the time to solution by approximately 22%. 

The I/O performance is also sensitive to overal I/O load 
on the entire system.  During the runs mentioned above, 
multiple jobs (over 2.4 GDoF) were executing 
concurrently; therefore creating competition in available 
bandwidth amongst the jobs.  The fastest times to solution 
are obtained when only one or two jobs are running 
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simultaneously.  Specifically, when  these jobs are run by 
themselves, the time to solution is about 2.6 times faster. 

Large-Scale analysis of a generic wing on 
NAVO/BABBAGE and AFRL/HAWK 

A little more than 50% of the large C-130 CWB mesh has 
been developed. Figure 1 shows the structural domain 
currently being meshed at CAStLE.  A stringer detail is 
shown in order to exemplify the mesh density used.  The 
mesh generator TrueGrid™, developed by XYZ 
Scientific, is used to create the large finite element mesh 
which is estimated to consist of about 25 million finite 
elements.  A representative mesh of the C-130 CWB is 
shown in Figure 5 with a close-up view of the skin-
stringer interface shown in Figure 6. 

In order to fine tune software optimisation, a very fine 
generic mesh of a wing was generated.  Figure 7 shows 
details from this mesh. Skin, rivets, frames and stiffeners 
were all modelled in great detail as 3-dimensional objects. 
The full mesh has 13.3 million hexahedral elements. 

The problem was solved using the hp-version of the finite 
element method.  Table 3 shows the number of degrees of 
freedom, the number of processors used and the wall time 
needed. The 256 processor job was analysed on a very 
large SGI-system which makes the execution times vary a 
lot due to entire I/O load on the full system.  

A closer look on solution characteristics from the three 
executions shows that the load balancing over the 
execution period was excellent.  

Table 3. Analysis of the generic wing on SGI/Altix 4700 and 
NAVO/BABBAGE systems 

p-level Host MDoF Processors Wall time (h)

2 
puma 

243 
48 43 

eagle 64 30 
hawk 256 28 

3 eagle 418 64 55 
hawk 256 60 

4 puma 742 64 288 
hawk 192 252 

5 babbage 1242 1728 15 
puma → SGI Altix 4700 BX2, 78 CPU, 624 GB memory, 100 TB disk at USAFA 
eagle → SGI Altix 3700, 2048 CPU, 2 TB memory, 100 TB disk at AFRL 
hawk → SGI Altix 4700, 9000 CPU, 40 TB memory, 300 TB disk at AFRL 
babbage →IBM P5+, 3072 CPU, 6.4 TB memory, 139 TB disk at NAVO  

Fast solution of GDOF problems.   

The long execution times exemplified in Table 3 are due 
to the huge computational work needed for these large 
problems. In order to get reasonable execution times, a 
hardware system with many more processors and, ideally, 
higher I/O-capacity has to be used. The IBM POWER5/6 
series at NAVO are hardware with excellent properties in 
this respect. Since these machines are distributed memory 

machines, the limited memory issue is to be considered 
carefully when designing the load balancing algorithm. 

The domain subdivision described above is based on a 
bottom-up approach and results in excellent load 
balancing. The memory requirement is determined, if 
extensive I/O is to be avoided, by the size of the largest 
domain on the top level. This approach does not presently 
consider the memory requirement on the top level.  Thus, 
the memory needed might be rather non-optimal 
(unnecessarily large) which might prevent solution of 
very large problems on distributed memory machines 
with limited memory per computational node. The present 
approach, adapted to the development resource available, 
is to use a combined top-down and bottom-up approach 
for the domain division, i.e. the global mesh is in a first 
step divided into a small number (4-64, say) of large 
domains where the division is made with respect to 
available memory per node on the hardware platform and 
load balancing on the level just below the top level. The 
bottom-up domain division technique is then used for 
subsequent mesh subdivision of the resulting global 
domains. 

The usefulness of such a technique for solution of GDoF 
size problems on distributed memory machines was first 
tested semi-manually. The global domain shown in Figure 
7 was used in a series of tests. Polynomial order p=5 
resulting in a problem with 1.24 GDOF’s was used for 
testing.  Problems of this size are needed to achieve the 
objectives of the present Challenge project.  The authors 
are unaware of any finite element analysis using more 
DoF.  Figure 8 summarize results from the most recent 
test.  The 13.3M element mesh was first manually split 
into 8 sub-domains, using a top-down approach, of rather 
different computational sizes in order to the fit into the 
memory available per computational node on 
NAVO/BABBAGE. Load balancing was obtained by 
assigning 8-20 MPI-processes to the different domains. 
The top level analysis and restarts were done manually. In 
all, 1728 processors were used. The figure shows that the 
manual domain subdivision was not perfect since 
execution times for domain creation, 10 levels, varied 
between 11.1 and 12.8 hours. The total execution time 
was around 15 hours for this large 1.214 GDOF problem 
on NAVO/BABBAGE.  A similar analysis was conducted 
on AFRL/HAWK using 256 processors, 732 GB memory, 
and 20 mpi.  A comparison is made in Table 4.  Columns 

Table 4 Comparison of Domain Decomposition for 1.2 
GDoF Mesh 

MDoF Hawk Relative 
Performance 

Babbage Relative 
Performance

Babbage/Hawk 
Relative Performance

152.3 1.00 1.01 1.45
152.3 6.30 1.82 2.60
152.5 6.22 1.90 2.72
149.8 1.71 1.68 2.40
152.3 1.70 1.30 1.87
152.3 1.71 1.28 1.83
152.5 1.35 1.00 1.43
149.8 1.79 1.65 2.36

p-level  = 5



two and three show the relative performance on the given 
system.  The last column shows a comparison of the 
fastest job, which was on AFRL/HAWK, to jobs on both 
AFRL/HAWK and NAVO/BABBAGE.  In other words, 
the NAVO/BABBAGE jobs are 1.43 to 2.72 times slower 
than the fastest job on AFRL/HAWK in the domain 
decomposition phase of the solution. 

The top-down, bottom-up approach is presently being 
implemented together with MPI-2 functionalities for 
improved I/O performance. With these software 
improvements and using faster hardware, IBM/POWER6, 
the turnaround time will decrease significantly. 

The I/O performance on NAVO/BABBAGE was 
measured by Sameer Shende and David Cronk using the 
TAU Performance System.5  An aircraft stiffened shell 
mesh with 133 MDoF was analyzed using 1,024 cores and 
16 MPI ranks in 9 hours wall time.  They observed that 
I/O operations on rank 0 of each node took over two 
hours longer than the I/O operations on the other ranks.5  
The two hours on rank 0 was spent in an assembler 
subroutine.  Since the time of the measurement, the 
assembler has been rewritten and assembly time will be 
reduced by at least a factor of 10.  Thus, a time to solution 
savings of 22% (2 hrs / 9 hrs) can be realized.  In 
addition, the mean peak write and read bandwith was 4.7 
and 4.2 GB/s; respectively.5  The peak write bandwidth 
achieved was 5.62 GB/s.5  Not until now has the I/O 
performance of STRIPE been observed to such detail. 

3. Error Estimation 
We employ an hp-version of the finite element method in 
order to estimate the errors in any quantity of interest. 
Hence, very accurate solutions are derived by using 
properly designed meshes and increasing the number of 
degrees of freedom per element (i.e. the order p of the 
basis functions in the finite element approximation).  The 
number of degrees of freedom needed in order to obtain a 
solution of high accuracy depends on the mathematical 
properties of the exact solution, u. The solutions sought 
do in all practical cases exhibit singularities at 
geometrical edges, vertices and at faces where material 
data changes abruptly. The solution can in the 
neighborhood of such a singularity be expressed as 
ݑ ൌ ܭ · ఒݎ · ݂ሺߠሻ where r is the distance to the 
edge/vertex/material interface and θ a polar angle. K is a 
complex valued stress intensity function which varies 
along edges.The complex scalar, or function in case of 
edges and for non uniform material data, λ and the 
function f depend on local data at the edge/vertex, that is 
local material properties, boundary conditions and 
geometry. The intensity function K depends on global 
data of the problem. 

For reliable solution of the equations approximate 
knowledge of (f, λ) is of primary importance since,  

• the regularity of the exact solution u is 
determined by (f, λ)  and hence the 
approximation properties of the numerical 
solution scheme used to derive approximate 
solutions 

• for calculation of stress functions which are 
important engineering parameters in fatigue and 
damage tolerant design 

We are interested in displacement approximations ݑത, 
stress approximations ߪത, and stress intensity function 
approximations ܭഥ, at points (x,y,z) to the exact 
mathematical values u, σ, K such that 

|ሺݑሺݔሻ െ ሻሻݔതሺݑ ⁄ሻݔሺݑ |    ଵߝ

|ሺߪሺݔሻ െ ሻሻݔതሺߪ ⁄ሻݔሺߪ |   ଶߝ

|ሺܭሺݔሻ െ ሻሻݔഥሺܭ ⁄ሻݔሺܭ |        ଷߝ

 denote the infinity norm, that is point wise values at |ז|
(x,y,z) and εi denote tolerances.  

Relative errors of the order 0.01 to 0.001 are rather easy 
to obtain at any point (x) when the hp-version of the finite 
element method (FEM) is employed. The approach used 
to derive accurate solutions with control of the error in the 
solution is the following 

• Use mesh generation principles which are based 
on á priori known properties of the exact 
mathematical solution near geometrical 
edges/vertices/material interfaces which, in 
linear cases, leads to an exponentially decreasing 
error with increasing number of degrees of 
freedom, N  

• Use hierarchical properties of the basis functions 
for fast calculation of element stiffness matrices 
and residuals to be used large in scale 

• Use advanced post-treatment for accurate 
extraction of solution data like stress intensity 
factors, K etc. 

In Figure 9, the relative percent error in the Von Mises 
stresses in the vicinity of the crack tip using p = 2 and 
p = 4 are shown.  The error is quite large, ±20%, which 
has safety implications since the p = 4 solution gives 
higher stresses indicating a lower residual strength.  Error 
estimation with this level of fidelity is not usually 
obtained using traditional h-version finite element 
analysis. 

The software used for large scale analysis can only 
consider finite elements of solid type, brick and wedge 
type of elements.  

(5) 
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For each of the three element types considered, a local 
coordinate system (ξ,η,ζ) may be assigned and 
topological entities as corners, edges and faces defined. 
The corresponding element basis functions are denoted 
corner, edge, face and internal basis functions, 
respectively. Table 5 shows the number of basis functions 
as function of the polynomial order p used. 

Table 5 Number of vertex, edge, face, and internal basis 
function for p-type finite elements available 

Element ηv ηe ηf ηi 
Brick Q 8 12ሺ െ 1ሻ,   2 6ሺ െ 1ሻଶ,   2 ሺ െ 1ሻଷ,   2
Brick Q’ 8 12ሺ െ 1ሻ,   2 3ሺ െ 2ሻሺ െ 3ሻ,   2 ሺ െ 3ሻሺ െ 4ሻሺ െ 5ሻ 6,   6⁄

Wedge Q 6 9ሺ െ 1ሻ,   2 3ሺ െ 1ሻଶ| 
 2   ሺ െ 1ሻሺ െ 2ሻ|   3 ሺ െ 1ሻଶሺ െ 2ሻ/2,   3 

Wedge Q’ 6 9ሺ െ 1ሻ,   2 3ሺ െ 2ሻሺ െ 3ሻ 2⁄  |
 4   ሺ െ 1ሻሺ െ 2ሻ|   3 ሺ െ 2ሻሺ െ 3ሻሺ െ 4ሻ 6,   5⁄

Simplex 4 6ሺ െ 1ሻ,   2 2ሺ െ 1ሻሺ െ 2ሻ,   3 ሺ െ 1ሻሺ െ 2ሻሺ െ 3ሻ 6,   4⁄

The number of nodes in a Q’-type brick element is for 
example 20, 50, 105, and 192 for polynomial orders p= 2, 
4, 6 and 8, respectively. The solutions described are all 
obtained with Q’ type of finite elements. Q-type elements 
often show better approximation properties and scalability 
than Q’-type elements. The draw back with Q-elements is 
that the number of degrees of freedom increases very fast 
with p so for big meshes only a few solutions are 
affordable, hence making it difficult to estimate the 
solution accuracy.  Non-homogenous p-distributions can 
be assigned automatically via a self-adaptive scheme, or 
manually. 

4.  Summary 
The focus of the present paper is the development of 
advanced computational methods for reliable fatigue and 
residual strength analysis of bolted-riveted-bonded 
metallic structures. The main accomplishments were 
• Created FE-meshes for majority of C-130 CWB 
• Fast solver for solution of GDOF-problems with 104 

to 105 right hand sides 
• Benchmarking on generic C-130 models with up to 

1.2 GDoFs 
o GDoF problems require top-down, bottom-

up domain decomposition for solution 

• Factors affecting time to solution 
o Memory per CPU (AFRL/HAWK), Memory 

per node (NAVO/BABBAGE) 
o I/O performance 
o Constraints imposed by shared environment 
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Figure 1. C-130 CWB. Stringer shown exemplifies a 
characteristic mesh density 

 
Figure 2. Schematic of splitting scheme in a 2D setting and 
in case stress intensity factor calculation for the case with 
unknown contact surfaces 



 
Figure 3. Loads on local problems are shear tractions Q1(ϕ) 
on the entire circular boundary, normal tractions Q2(ϕ)  on 
the part of the circular boundary not in contact, shear 
tractions Q3(ϕ)  and normal tractions Q4(ϕ) on the crack 
face, respectively.  All loading cases are treated separately. 

 
Figure 4. Steps in solution of 3D contact problems using a 
fracture mechanics approach to find contact areas and 
crack data with high accuracy in a few iterations 

 

 
Figure 5. Cutaway view of C-130 CWB Finite Element 
Mesh 

 
Figure 6. Close-up view of stringer-skin interface 

 
Figure 8. Benchmark results from analysis of generic wing 
consisting of 13.3M finite elements. A semi-automatic 
approach was used to solve the problem. 

 
 

 
Figure9. Relative error in Von Mises stress solutions for a 
curved, stiffened panel using p = 2 and p = 4 

 
Figure 7. Generic 1/2 mesh of C-130 CWB consisting of 7M 
hexahedral elements 


