
Fast and Reliable Solution of GDoF-Problems on NAVO/BABBAGE and
AFRL/HAWK Systems

Scott Fawaz

United States Air Force Academy
scott.fawaz@usafa.edu

Börje Andersson

Swedish Defense Research Agency
ba@foi.se

Abstract

Fast and reliable structures and materials analysis of full
fuselage, wing, and/or empennage sections is now for first
time possible with access to highly optimized software,
called STRIPE, and the NAVO/BABBAGE and
AFRL/HAWK systems. Analyses of this type have
opened up the possibility for considering the statistical
uncertainties in material data, geometry, crack locations,
etc. Very detailed analysis can be performed on huge
models which are geometrically exact down to rivet
details where growth of numerous cracks at numerous
locations is studied. Access to this type of analysis results
can drastically reduce inspection requirements, prevent
premature retirement of old aircraft and increase aircraft
safety; all resulting in a potential to save billions of
dollars if implemented across the USAF fleet.

By applying a novel mathematical multi-scale scheme,
these problems can be split into solving many thousand
smaller problems and one very large problem. The
efficient implementation of these two different activities
is crucial for computing in a shared environment. This
technique results in solution of 109 sets of equations for
the large problem with greater than 104 right hand sides
and thousands of smaller problems having about 106
degrees of freedom (DoF) each. Iterative solvers are not
competitive so direct solvers must be used. The major
difficulty in achieving scalability is then related to the
extensive I/O traffic characteristic of commercially
available (MSC/NASTRAN and ABAQUS for example)
software.

The paper describes various techniques adopted to
achieve high system scalability when solving the world’s
largest strength of materials problem related to aircraft
maintenance and design. Support from major software
vendors (SGI, IBM), MSRC’s support specialists as well
as I/O specialists at the University of Tennessee (as a part
of the PET-program) have strongly contributed to the
successful results demonstrated. The technological

capability developed is demonstrated by analyzing an
idealized C-130 center wing box.

1. Introduction
The requirement to solve GDoF (109 DoF) finite element
meshes is a result of trying to assess the residual strength
of the C-130 center wing box (CWB). Residual strength
is simply the maximum load carrying capability of a
structure with a given damage condition. The structural
integrity of the C-130 CWB has been under investigation
for quite some time.1 One damage condition of interest
was determined during an extensive destructive teardown
and failure analysis.2 The computational methods
developed control the error in the solution, are validated
by strain data from test such as that shown in reference
[3] and can be used to predict this specific damage
condition as well as 1000’s more.

In order to obtain reliable solutions, the contact problems
riveted connections, multiple interacting fatigue cracks,
corrosion damage, etc. must be considered in the large
parts of the structural parts analyzed. Thus, statistical
fatigue analysis is a necessity. We use a multi-scale
scheme for solution of contact problems. In order to
effectively use this scheme, the equation solver must
efficiently handle many right hand sides. Although
iterative solvers are superior if the ill-conditioning and
load balancing problems can be solved, which is an open
question for problems of this size, direct solvers are
preferred when solving problems with hundreds of
thousands of right hand sides. A direct equation solver
designed for solution of problems with many right hand
sides with emphasis on retaining good scalability on
hardware systems having thousand of processors is
described below. Very large meshes of a C-130 CWB
resulting in problems of GDoF-size have been created at
the USAF Academy’s Center for Aircraft Structural Life
Extension (CAStLE). Large-scale analyses on the
AFRL/HAWK and NAVO/BABBAGE systems using
thousands of processors have been performed.

2. A Direct Solver for Solution of GDoF
Problems
Domain Decomposition

A domain decomposition approach is being developed
where non-iterative techniques are used on each analysis
level including the top level. The basic method used
hence is the classical sub-structuring technique (i.e.
computation of the Schur complement in mathematical
notation). The system of algebraic equations to solve on
each analysis level can then be written:

ቂ ܣ ܤ
்ܤ ቃܥ ቄ

ݔ
ݔ

ቅ ൌ ൜ܨ
ܨ

ൠ

The internal degrees of freedom are denoted xi and the
boundary degrees of freedom xb, respectively. The
computational steps are,

• Assembly of domains from the analysis level
below (or element matrices on lowest level) in
order to form matrices A, B and C, respectively

• Factorize of the A-matrix
• Calculate ሾିܣଵ · ሿܤ
• Create domain stiffness ሾܥ െ ்ܤ · ଵିܣ · ሿܤ
• Create right hand side ሼܨሽሾ்ܤ · ሽܨଵሿሼିܣ

If the memory is large enough, the five steps are
computed sequentially without writing any data to disk.
If memory is insufficient, temporary data is written to
disk creating an enormous I/O bottleneck which precludes
scalability to large systems.

To obtain good scalability, the subdivision of the domain
into sub-domains must

• Minimise the total number of floating point
operations required

• Equally distribute the computational load over
the hardware system used

• Consider memory limitations on distributed
memory systems like NAVO/BABBAGE

• Consider number of partitions used on shared
memory systems like AFRL/HAWK

Presently, an automated bottom-up approach is used to
define the domains on various levels. In the first step the
finite element mesh is divided into a number of element
groups containing typically 30-40 finite elements in case
of stiffened shell structures. The process is repeated on
level after level until only one global element remains
(top level). Typically 3-12 levels are used for problems
ranging from MDoFs to GDoFs. The load balancing
algorithm is iterative and is more difficult on the higher
domain levels. The measure of the computational work in
the load balancing algorithm is the number of floating
point operations which can be calculated exactly since a

direct solution technique is used. Ideally the amount of
I/O needed on the different levels should be considered
too when optimizing the load balancing.

Table 1 exemplifies the approximate number of domains
created at different analysis levels during the
decomposition of a generic finite element mesh having 13
million finite elements, Figure 7.

Table 1 Example of the number of domains used per level
when analyzing a mesh with 13 million finite elements

Level 1 2 3 4 5 6 7 8 9 10
Number of
Domains 360,000 90,000 16,000 4,000 1,000 260 80 25 7 1

The solver uses mixed OpenMP and MPI software where
OpenMP is used in each MPI-process. On distributed
memory machines, one MPI process is typically allocated
to one computational node. The main reason for using
mixed MPI/OpenMP is that each MPI process must have
access to sufficient memory. As mentioned, the load
balancing algorithm, which governs the subdivision into
domains, is based on the criterion that each MPI process
shall perform roughly the same number of floating point
operations. Initially each MPI process, computational
node, works completely independently and analyzes a
number of levels, starting from the lowest level,
completely independent of the other MPI processes. The
number of levels to be analyzed by one MPI process is
selected from the criterion that the computational work in
the different MPI-processes should be equal. This is often
achieved within a few percent variation.

Practical experience shows that for large wing type
structures like the C-130 CWB it is optimal if the
different MPI processes compute completely independent
of one another during the 5-8 lowest levels.

When close to perfect load balancing can no longer be
achieved by using completely isolated branches, one
branch per MPI process, the solver shifts mode and
assigns several MPI processes to calculate the domain
stiffness and right hand sides. Each analysis level has the
optimization task to find to the optimum distribution of
parallel jobs, i.e. the selection of domain sizes, their
distribution and the number of MPI-processes to assign to
each parallel job. Since the individual MPI-processes can
not share a common memory this part of the solution
scheme becomes more I/O-intensive something that
prevents good scaling properties on hardware systems like
the AFRL/HAWK.

We first discuss performance on the AFRL/HAWK
system. The learning curve was quite steep on the SGI
Altix shared memory system HAWK at AFRL. Several
months were spent simply porting the source code from
AFRL/EAGLE (SGI Altix as well) to HAWK. The
source code and makefiles did not change between the

(1)

two platforms. EAGLE was using SLES 9 and Intel
FORTRAN and C/C++ compiler versions 8.1; whereas,
HAWK was using SLES 10 and compiler versions 9.1
initially. STRIPE could not be recompiled and produce a
properly executing code under version 9.1 on HAWK.
The same problem would have existed on EAGLE using
compiler versions 9.1; thus, the problem appears to be
with the compiler and not with the hardware. Not until
version 10.0.023 was available did we have a working
executable on HAWK.

By default, MPI processes are always placed by (SGI)
mpirun and (LSF) pam commands in a round-robin
fashion. The omplace command was introduced in MPT
1.15, and was new to HAWK. Simply a dplace wrapper
script, it is not "required", but is much easier to use than
dplace. Using the wrong dplace options can result in all
processes being placed on just one CPU.4 Many
unsuccessful attempts were made using dplace before
exclusive use of omplace began in Sep 2007.

As our scaling attempts increased, we did so by increasing
the size of the job (computational effort), number of
CPUs and number of MPI processes. Regardless of
number of CPUs and MPI processes, as the computational
effort increased, the analysis would abort with no
information regarding the cause. After close observation
of executing jobs by the SGI experts, the cause was
determined to be that the MPI processes were exceeding
their available stacksize. Increasing the value of the
stacksize available to each MPI thread via the
KMP_STACKSIZE environment variable from the
default (1MB) to 1GB in addition to reducing the number
of OpenMP threads resulted in successful job execution.

For meshes above 742 MDoF, the analysis requires more
than 12 MPI processes to finish within the maximum two
week queue. However, increasing the number of MPI
process requires more memory than is available on the
HAWK fat partitions which have 4 GB memory per CPU.
Two possible solutions exist; one, execute the 12 MPI
process jobs for more than two weeks; two, execute
analysis across partitions to access more available
memory. The two fat partitions on HAWK have 500
CPUs and 2 TB memory; whereas requesting the
maximum CPUs per job allowed, 2000, makes 4 TB of
memory available per job but across multiple partitions.

Improvements were made to the domain decomposition
phase of the code in an attempt to solve the larger jobs
within the queue time limit. A 30% increase in domain
decomposition was achieved; however, meshes larger
than 742 MDoF still could not be solved.

Our success in executing cross partition jobs has been
limited. The largest job executed to date is 418 MDoF
which is the idealized C-130 CWB with a p-level of 3.

This size job is easily 10 times smaller than what is
required to analyze the full C-130 CWB. The cause of the
job crashes above p=3 is due to exceeding the requested
memory due to the unpredictable memory required for the
system buffer cache. This problem exists on the single
partitions jobs as well, but is somehow exacerbated in the
cross-partition jobs. Currently, there is no solution to this
problem.

Another unresolved issue with cross-partition jobs is long
wait times on messages sent from the metadata server
(MDS). The SGI experts noticed a correlation between
long wait times on messages sent from the MDS and hard
crashes of the cross-partitions jobs. The cause of the long
wait times has yet to be determined.

Lastly, excessive ethernet errors were occurring on three
of the batch nodes which caused cross-partition MPI jobs
to crash.4 We learned of this issue on 3 June 08 and have
not determined how many jobs in the past year have
crashed for this reason.

Many right hand sides

For problems of GDoF size, the number of right hand
sides can exceed 50,000. The strategy used for obtaining
good computational efficiency in such a case is

• Calculate all solution vectors on the top level
and write solution data only for boundary nodes
for those domains forming the top level domain

• For each level, and each domain on that level,
calculate the solution data for the boundary
nodes for domains on the level directly below

• On the lowest domain level, assemble all local
solution vectors for each load case to a global
vector with degrees of freedom

As mentioned previously, on each domain level the
different MPI processes work independently. Even for a
very large number of right hand sides, the stiffness matrix
needs to be read from disk only once which keeps the I/O
operations at a minimum.

The wall time, TLC, needed to decompose a problem with
LC right hand sides has, for a 50 MDoF problem with
50,000 right hand sides been measured on
NAVO/BABBAGE to

ܶ ൌ ௨ܶ · ሺ1 ܥܮ 22000⁄ ሻ

Where Tup is the wall time needed to decompose a
problem with just one right hand side. The wall time
needed to calculate the internal degrees of freedom once
the top level problem has been solved, TLC2, was observed
to be:

ܶଶ ൌ ௗܶ௪ · ሺ1 ܥܮ 4500⁄ ሻ

(2)

(3)

Where Tdown is the wall time needed with just one right
hand side.

Accurate and Fast Solution of 3D Contact Problems

In order to accurately analyze the C-130 CWB mesh, the
contact problem, which generates 104 to 105

 right hand
sides, between the rivets/bolts and aircraft structure must
be solved. Due to the nonlinear character of the contact
problem an iterative scheme has been designed which is
both robust, virtually exact, converges fast and
simultaneously takes the mathematical character of the
problems appearing during the iteration steps into
account. The contact problem, Figure 2, of interest is
split into three problems. The global problems a) and c)
in Figure 2 are analyzed without considering either the
contact surfaces or the crack surfaces, i.e., all surfaces are
in perfect sliding-free contact. The splitting scheme used
then has the advantage that the global analysis a) and c)
which is very costly for problems of GDoF-size do not
have to be repeated for varying crack sizes and contact
surfaces. The local problems b), see also Figure 3, are
analyzed for fixed (but á priori unknown) locations of the
contact surfaces for a set of loading functions defined by
carefully selected traction basis functions Q1 − Q4 and
scaling factors β(m,I), the primary unknowns.

A necessary condition to be satisfied at the two points
separating contact and no-contact is:

 KI = 0

and that normal stresses are compressive at the part of the
circular boundary being in contact. Equation (4) can be
used as a very precise criterion to find the two points
separating contact and no-contact. A simple Newton-type
algorithm can then be used to find the contact points
satisfying Eq. (4) for each bolt/rivet. The splitting
scheme is simply used as a very fast solver for
determination of stress intensity factors at the crack-tips
and at potentially correct contact positions during
iterations. Note that during iterations and before
convergence is achieved KI ≠ 0 implying that there is a
strong stress singularity at the assumed contact positions.
Robustness of the approach is obtained by using a hp-type
of mesh moving with the location of the assumed contact
points. Experience shows that the algorithm converges to
about 3 digits accuracy in less than 5 iterations. Figure 4
gives an overview of the contact solution scheme in a 3D
setting.

CPU efficiency: The code is optimized for efficient
memory and cache utilization and executes typically with
70-80% of the theoretical peek processor speeds
(typically 3-8 GFLOPs/CPu on state of the art hardware
2007).

I/O efficiency: Scalability to thousands of processors on
the GDoF problems of interest is prevented by the
significant I/O activities needed in a direct solver.
Different techniques are used in the solver to reduce the
time needed for I/O. The techniques used are use of large
memory buffers, recalculation of data, reuse of data in
memory buffer, building local data structures optimized
for each MPI process etc.

Table 2 exemplifies the scaling performance for a small
shell problem having about 20 MDOFs. Speed up is
measured in wall time, hence data shown includes all I/O-
activities. The table shows that by increasing the number
of processors by a factor five, from 2 nodes to 10 nodes
on NAVO/BABBAGE, the time needed to solve the
problem decreases by a factor four. The high theoretical
maximum processor speed, i.e., 7.6 GFLOPS and the very
efficient utilization of processors in the code, 70-80% of
theoretical speed, makes I/O effects more critical when it
comes to scalability.

Table 2 Scaling properties measured in wall time during
solution of a shell problem with 20 MDoF

Relative
Performance CPU 8 16 32 64 96 128 160 192

babbage - - 1.00 1.88 2.68 3.36 3.97 4.63
hawk 1.00 0.59 7.00 7.00 - 4.04 4.29 3.75

On the AFRL/HAWK system with theoretical maximum
processor speed of 6.4 GFLOPS; time to solution is
extremely sensitive to I/O performance just as with
NAVO/BABBAGE. On AFRL/HAWK, workspace for
executing jobs reside on two large file systems
(/workspace and /large). If all of the I/O is with files
residing in the same directory, the files will all reside on a
small subset of disks which severely limits the available
I/O bandwidth. If each file is placed in a different
directory, they would be spread across many disks and
provide much greater I/O performance.4 This concept
was investigated by executing a 133 MDoF analysis using
256 CPU, 512 GB memory, and 8 MPI processes. This
analysis was run ten times with all file I/O on a single
directory and ten times with all file I/O on multiple
(roughly 20) directories. The mean and standard
deviation wall time to solution, which includes all I/O
activity, for the single directory execution was 72.3 hrs
and 5.6 hrs and mulitiple directory runs was 56.6 hrs and
14.7 hrs; respectively. Thus, using multiple directories
increases the time to solution by approximately 22%.

The I/O performance is also sensitive to overal I/O load
on the entire system. During the runs mentioned above,
multiple jobs (over 2.4 GDoF) were executing
concurrently; therefore creating competition in available
bandwidth amongst the jobs. The fastest times to solution
are obtained when only one or two jobs are running

(4)

simultaneously. Specifically, when these jobs are run by
themselves, the time to solution is about 2.6 times faster.

Large-Scale analysis of a generic wing on
NAVO/BABBAGE and AFRL/HAWK

A little more than 50% of the large C-130 CWB mesh has
been developed. Figure 1 shows the structural domain
currently being meshed at CAStLE. A stringer detail is
shown in order to exemplify the mesh density used. The
mesh generator TrueGrid™, developed by XYZ
Scientific, is used to create the large finite element mesh
which is estimated to consist of about 25 million finite
elements. A representative mesh of the C-130 CWB is
shown in Figure 5 with a close-up view of the skin-
stringer interface shown in Figure 6.

In order to fine tune software optimisation, a very fine
generic mesh of a wing was generated. Figure 7 shows
details from this mesh. Skin, rivets, frames and stiffeners
were all modelled in great detail as 3-dimensional objects.
The full mesh has 13.3 million hexahedral elements.

The problem was solved using the hp-version of the finite
element method. Table 3 shows the number of degrees of
freedom, the number of processors used and the wall time
needed. The 256 processor job was analysed on a very
large SGI-system which makes the execution times vary a
lot due to entire I/O load on the full system.

A closer look on solution characteristics from the three
executions shows that the load balancing over the
execution period was excellent.

Table 3. Analysis of the generic wing on SGI/Altix 4700 and
NAVO/BABBAGE systems

p-level Host MDoF Processors Wall time (h)

2
puma

243
48 43

eagle 64 30
hawk 256 28

3 eagle 418 64 55
hawk 256 60

4 puma 742 64 288
hawk 192 252

5 babbage 1242 1728 15
puma → SGI Altix 4700 BX2, 78 CPU, 624 GB memory, 100 TB disk at USAFA
eagle → SGI Altix 3700, 2048 CPU, 2 TB memory, 100 TB disk at AFRL
hawk → SGI Altix 4700, 9000 CPU, 40 TB memory, 300 TB disk at AFRL
babbage →IBM P5+, 3072 CPU, 6.4 TB memory, 139 TB disk at NAVO

Fast solution of GDOF problems.

The long execution times exemplified in Table 3 are due
to the huge computational work needed for these large
problems. In order to get reasonable execution times, a
hardware system with many more processors and, ideally,
higher I/O-capacity has to be used. The IBM POWER5/6
series at NAVO are hardware with excellent properties in
this respect. Since these machines are distributed memory

machines, the limited memory issue is to be considered
carefully when designing the load balancing algorithm.

The domain subdivision described above is based on a
bottom-up approach and results in excellent load
balancing. The memory requirement is determined, if
extensive I/O is to be avoided, by the size of the largest
domain on the top level. This approach does not presently
consider the memory requirement on the top level. Thus,
the memory needed might be rather non-optimal
(unnecessarily large) which might prevent solution of
very large problems on distributed memory machines
with limited memory per computational node. The present
approach, adapted to the development resource available,
is to use a combined top-down and bottom-up approach
for the domain division, i.e. the global mesh is in a first
step divided into a small number (4-64, say) of large
domains where the division is made with respect to
available memory per node on the hardware platform and
load balancing on the level just below the top level. The
bottom-up domain division technique is then used for
subsequent mesh subdivision of the resulting global
domains.

The usefulness of such a technique for solution of GDoF
size problems on distributed memory machines was first
tested semi-manually. The global domain shown in Figure
7 was used in a series of tests. Polynomial order p=5
resulting in a problem with 1.24 GDOF’s was used for
testing. Problems of this size are needed to achieve the
objectives of the present Challenge project. The authors
are unaware of any finite element analysis using more
DoF. Figure 8 summarize results from the most recent
test. The 13.3M element mesh was first manually split
into 8 sub-domains, using a top-down approach, of rather
different computational sizes in order to the fit into the
memory available per computational node on
NAVO/BABBAGE. Load balancing was obtained by
assigning 8-20 MPI-processes to the different domains.
The top level analysis and restarts were done manually. In
all, 1728 processors were used. The figure shows that the
manual domain subdivision was not perfect since
execution times for domain creation, 10 levels, varied
between 11.1 and 12.8 hours. The total execution time
was around 15 hours for this large 1.214 GDOF problem
on NAVO/BABBAGE. A similar analysis was conducted
on AFRL/HAWK using 256 processors, 732 GB memory,
and 20 mpi. A comparison is made in Table 4. Columns

Table 4 Comparison of Domain Decomposition for 1.2
GDoF Mesh

MDoF Hawk Relative
Performance

Babbage Relative
Performance

Babbage/Hawk
Relative Performance

152.3 1.00 1.01 1.45
152.3 6.30 1.82 2.60
152.5 6.22 1.90 2.72
149.8 1.71 1.68 2.40
152.3 1.70 1.30 1.87
152.3 1.71 1.28 1.83
152.5 1.35 1.00 1.43
149.8 1.79 1.65 2.36

p-level = 5

two and three show the relative performance on the given
system. The last column shows a comparison of the
fastest job, which was on AFRL/HAWK, to jobs on both
AFRL/HAWK and NAVO/BABBAGE. In other words,
the NAVO/BABBAGE jobs are 1.43 to 2.72 times slower
than the fastest job on AFRL/HAWK in the domain
decomposition phase of the solution.

The top-down, bottom-up approach is presently being
implemented together with MPI-2 functionalities for
improved I/O performance. With these software
improvements and using faster hardware, IBM/POWER6,
the turnaround time will decrease significantly.

The I/O performance on NAVO/BABBAGE was
measured by Sameer Shende and David Cronk using the
TAU Performance System.5 An aircraft stiffened shell
mesh with 133 MDoF was analyzed using 1,024 cores and
16 MPI ranks in 9 hours wall time. They observed that
I/O operations on rank 0 of each node took over two
hours longer than the I/O operations on the other ranks.5
The two hours on rank 0 was spent in an assembler
subroutine. Since the time of the measurement, the
assembler has been rewritten and assembly time will be
reduced by at least a factor of 10. Thus, a time to solution
savings of 22% (2 hrs / 9 hrs) can be realized. In
addition, the mean peak write and read bandwith was 4.7
and 4.2 GB/s; respectively.5 The peak write bandwidth
achieved was 5.62 GB/s.5 Not until now has the I/O
performance of STRIPE been observed to such detail.

3. Error Estimation
We employ an hp-version of the finite element method in
order to estimate the errors in any quantity of interest.
Hence, very accurate solutions are derived by using
properly designed meshes and increasing the number of
degrees of freedom per element (i.e. the order p of the
basis functions in the finite element approximation). The
number of degrees of freedom needed in order to obtain a
solution of high accuracy depends on the mathematical
properties of the exact solution, u. The solutions sought
do in all practical cases exhibit singularities at
geometrical edges, vertices and at faces where material
data changes abruptly. The solution can in the
neighborhood of such a singularity be expressed as
ݑ ൌ ܭ · ఒݎ · ݂ሺߠሻ where r is the distance to the
edge/vertex/material interface and θ a polar angle. K is a
complex valued stress intensity function which varies
along edges.The complex scalar, or function in case of
edges and for non uniform material data, λ and the
function f depend on local data at the edge/vertex, that is
local material properties, boundary conditions and
geometry. The intensity function K depends on global
data of the problem.

For reliable solution of the equations approximate
knowledge of (f, λ) is of primary importance since,

• the regularity of the exact solution u is
determined by (f, λ) and hence the
approximation properties of the numerical
solution scheme used to derive approximate
solutions

• for calculation of stress functions which are
important engineering parameters in fatigue and
damage tolerant design

We are interested in displacement approximations ݑത,
stress approximations ߪത, and stress intensity function
approximations ܭഥ, at points (x,y,z) to the exact
mathematical values u, σ, K such that

|ሺݑሺݔሻ െ ሻሻݔതሺݑ ⁄ሻݔሺݑ | ଵߝ

|ሺߪሺݔሻ െ ሻሻݔതሺߪ ⁄ሻݔሺߪ | ଶߝ

|ሺܭሺݔሻ െ ሻሻݔഥሺܭ ⁄ሻݔሺܭ | ଷߝ

 denote the infinity norm, that is point wise values at |ז|
(x,y,z) and εi denote tolerances.

Relative errors of the order 0.01 to 0.001 are rather easy
to obtain at any point (x) when the hp-version of the finite
element method (FEM) is employed. The approach used
to derive accurate solutions with control of the error in the
solution is the following

• Use mesh generation principles which are based
on á priori known properties of the exact
mathematical solution near geometrical
edges/vertices/material interfaces which, in
linear cases, leads to an exponentially decreasing
error with increasing number of degrees of
freedom, N

• Use hierarchical properties of the basis functions
for fast calculation of element stiffness matrices
and residuals to be used large in scale

• Use advanced post-treatment for accurate
extraction of solution data like stress intensity
factors, K etc.

In Figure 9, the relative percent error in the Von Mises
stresses in the vicinity of the crack tip using p = 2 and
p = 4 are shown. The error is quite large, ±20%, which
has safety implications since the p = 4 solution gives
higher stresses indicating a lower residual strength. Error
estimation with this level of fidelity is not usually
obtained using traditional h-version finite element
analysis.

The software used for large scale analysis can only
consider finite elements of solid type, brick and wedge
type of elements.

(5)

(6)

(7)

For each of the three element types considered, a local
coordinate system (ξ,η,ζ) may be assigned and
topological entities as corners, edges and faces defined.
The corresponding element basis functions are denoted
corner, edge, face and internal basis functions,
respectively. Table 5 shows the number of basis functions
as function of the polynomial order p used.

Table 5 Number of vertex, edge, face, and internal basis
function for p-type finite elements available

Element ηv ηe ηf ηi
Brick Q 8 12ሺ െ 1ሻ, 2 6ሺ െ 1ሻଶ, 2 ሺ െ 1ሻଷ, 2
Brick Q’ 8 12ሺ െ 1ሻ, 2 3ሺ െ 2ሻሺ െ 3ሻ, 2 ሺ െ 3ሻሺ െ 4ሻሺ െ 5ሻ 6, 6⁄

Wedge Q 6 9ሺ െ 1ሻ, 2 3ሺ െ 1ሻଶ|
 2 ሺ െ 1ሻሺ െ 2ሻ| 3 ሺ െ 1ሻଶሺ െ 2ሻ/2, 3

Wedge Q’ 6 9ሺ െ 1ሻ, 2 3ሺ െ 2ሻሺ െ 3ሻ 2⁄ |
 4 ሺ െ 1ሻሺ െ 2ሻ| 3 ሺ െ 2ሻሺ െ 3ሻሺ െ 4ሻ 6, 5⁄

Simplex 4 6ሺ െ 1ሻ, 2 2ሺ െ 1ሻሺ െ 2ሻ, 3 ሺ െ 1ሻሺ െ 2ሻሺ െ 3ሻ 6, 4⁄

The number of nodes in a Q’-type brick element is for
example 20, 50, 105, and 192 for polynomial orders p= 2,
4, 6 and 8, respectively. The solutions described are all
obtained with Q’ type of finite elements. Q-type elements
often show better approximation properties and scalability
than Q’-type elements. The draw back with Q-elements is
that the number of degrees of freedom increases very fast
with p so for big meshes only a few solutions are
affordable, hence making it difficult to estimate the
solution accuracy. Non-homogenous p-distributions can
be assigned automatically via a self-adaptive scheme, or
manually.

4. Summary
The focus of the present paper is the development of
advanced computational methods for reliable fatigue and
residual strength analysis of bolted-riveted-bonded
metallic structures. The main accomplishments were
• Created FE-meshes for majority of C-130 CWB
• Fast solver for solution of GDOF-problems with 104

to 105 right hand sides
• Benchmarking on generic C-130 models with up to

1.2 GDoFs
o GDoF problems require top-down, bottom-

up domain decomposition for solution

• Factors affecting time to solution
o Memory per CPU (AFRL/HAWK), Memory

per node (NAVO/BABBAGE)
o I/O performance
o Constraints imposed by shared environment

Acknowledgements
The authors wish to express their gratitude to the
Materials Directorate, Air Force Research Laboratory,
Wright Patterson AFB for sponsoring this work. We also
gratefully acknowledge the support of Brent Anderson,
AFRL/MSRC, John Skinner, NAVO/MSRC, and Steve
Senator, USAFA/M&SRC in development of the
computational platform. This work could not have been
accomplished without the support of the DoD High
Performance Computing Modernization Program.

Reference

1 Bateman, Geoffrey and Peter Christiansen, “C-130
Center Wing Fatigue Cracking -- A Risk Management
Approach,” Proc. of the 2005 USAF Aircraft Structural
Integrity Program Conference, 29 Nov – 1 Dec 2005,
Memphis, TN.
2 Shoales, Gregory, Sandeep R. Shah, Justin W. Rausch,
Molly R. Walters, Saravanan R. Arunachalam, and
Matthew J. Hammond, “C-130 Center Wing Box
Structural Teardown Analysis Final Report,” USAFA-
TR-2006-11.
3 Snider, Lawrence H., Franklin L. Reeder, and William
Dirkin, “Residual Strength and Crack Propagation Tests
on C-130 Airplane Center Wings With Service-Imposed
Fatigue Damage,” NASA_CR-2075, 1972.
4 Andersen, Brent, Personal Communication, 13 Mar 08.
5 Shende, Sameer, Allen Malony, Alan Morris and David
Cronk, “Observing Parallel Phase and I/O Performance
Using TAU,” 2008 High Performance Computing
Modernization Office User Group Conference, Seattle,
WA, 13-18 July 2008.

Figure 1. C-130 CWB. Stringer shown exemplifies a
characteristic mesh density

Figure 2. Schematic of splitting scheme in a 2D setting and
in case stress intensity factor calculation for the case with
unknown contact surfaces

Figure 3. Loads on local problems are shear tractions Q1(ϕ)
on the entire circular boundary, normal tractions Q2(ϕ) on
the part of the circular boundary not in contact, shear
tractions Q3(ϕ) and normal tractions Q4(ϕ) on the crack
face, respectively. All loading cases are treated separately.

Figure 4. Steps in solution of 3D contact problems using a
fracture mechanics approach to find contact areas and
crack data with high accuracy in a few iterations

Figure 5. Cutaway view of C-130 CWB Finite Element
Mesh

Figure 6. Close-up view of stringer-skin interface

Figure 8. Benchmark results from analysis of generic wing
consisting of 13.3M finite elements. A semi-automatic
approach was used to solve the problem.

Figure9. Relative error in Von Mises stress solutions for a
curved, stiffened panel using p = 2 and p = 4

Figure 7. Generic 1/2 mesh of C-130 CWB consisting of 7M
hexahedral elements

